Cyclone User’s Manual
Version 1.0, April 22, 2006

The latest version of this manual should be available at
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.research.att.com/projects/cyclone/ and
http://www.cs.umd.edu/projects/cyclone/.

http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.research.att.com/projects/cyclone/
http://www.research.att.com/projects/cyclone/
http://www.research.att.com/projects/cyclone/
http://www.cs.umd.edu/projects/cyclone/
http://www.cs.umd.edu/projects/cyclone/
http://www.cs.umd.edu/projects/cyclone/

Contents

1

Introduction
1.1 Acknowledgements, .

Cyclone for C Programmers

21 GettingStarted Lo oo
22 Pointers. e
23 Regions 0.
24 ATITAyS . ..o
25 Structs e
26 Unions i e e e e e e
2.7 C++,GCCand C99 Additions
2.8 Additional Features of Cyclone
29 Exceptions o 000000
2.10 Let Declarations and Pattern Matching
211 Subtyping Lo
2.12 Polymorphic Functions
2.13 Polymorphic Data Structures
2.14 Abstract and Existential Types
215 Restrictions. e
Pointers

3.1 Pointer Subtyping L oL
3.2 Pointer Coercions i
3.3 Default Region Qualifiers
3.4 Static ExpressionBounds00 0oL

Tagged Unions and Datatypes

41 TaggedUnions.
42 Datatypes o o
43 TheTagofOperator
44 Extensible Datatypes
Pattern Matching

51 LetDeclarations
52 PattermForms
5.3 SwitchStatements

6 Type Inference

7 Polymorphism

8 Memory Management Via Regions

8.1
8.2
8.3
8.4

Introduction
Allocation
CommonUses
Type-Checking Regions
841 RegionNames.
8.4.2 Capabilities
8.4.3 Type Declarations.
8.4.4 Subtyping and Effect Qualifiers .
845 FunctionCalls.
8.4.6 Explicit and Default Effects . . .

9 Pointers with Restricted Aliasing

9.1
9.2
9.3

94
9.5
9.6
9.7
9.8
9.9

Introduction
Allocation and Freeing
Unique Pointers
9.3.1 Simple Unique Pointers
9.3.2 Nested Unique Pointers

9.3.3 Pattern Matching on Unique Pointers

Reference-counted Pointers
Qualifier Polymorphism
Aliasing Unique Pointers
Dynamic Regions
Defaults and Shorthands
Subtyping for Effect Qualifier and Reaps

9.10 Reap Allocator Implementation

10 Namespaces

11 Varargs

12 Definite Assignment

72

75

75
75
78
80
85
85
86
87
87
89
89

90
90
91
93
94
96
97
99
100
102
104
107
110
111

112

114

116

13 Advanced Features 122

13.1 Existential Types 123
13.2 The Truth About Effects, Capabilities and Effect Subset Con-

straints o o oo oo 124

13.3 Interprocedural Memory Initialization 127

A Porting C code to Cyclone 128

A.l1 Semi-AutomaticPorting 128

A.2 Manually Translating CtoCyclone 130

A3 InterfacingtoC oL 139

A31 Extern“C” o o 139

A32 Extern“Cinclude” 140

B Frequently Asked Questions 143

C Libraries 161

C.1 ClLibraries 161

D Grammar 162

E Installing Cyclone 175

F Tools 176

E1l Thecompiler. 176

E2 Thelexer generator 179

E3 The parser generator 179

E4 The allocation profiler, aprof 179

E5 The Cinterface tool, buildlib 179

1 Introduction

Cyclone is a language for C programmers who want to write secure, ro-
bust programs. It’s a dialect of C designed to be safe: free of crashes, buffer
overflows, format string attacks, and so on. Careful C programmers can
produce safe C programs, but, in practice, many C programs are unsafe.
Our goal is to make all Cyclone programs safe, regardless of how care-
fully they were written. All Cyclone programs must pass a combination
of compile-time, link-time, and run-time checks designed to ensure safety.

There are other safe programming languages, including Java, ML, and
Scheme. Cyclone is novel because its syntax, types, and semantics are
based closely on C. This makes it easier to interface Cyclone with legacy
C code, or port C programs to Cyclone. And writing a new program in
Cyclone “feels” like programming in C: Cyclone tries to give program-
mers the same control over data representations, memory management,
and performance that C has.

Cyclone’s combination of performance, control, and safety make it a
good language for writing systems and security software. Writing such
software in Cyclone will, in turn, motivate new research into safe, low-
level languages. For instance, originally, all heap-allocated data in Cyclone
were reclaimed via a conservative garbage collector. Though the garbage
collector ensures safety by preventing programs from accessing deallo-
cated objects, it also kept Cyclone from being used in latency-critical or
space-sensitive applications such as network protocols or device drivers.
To address this shortcoming, we have added a region-based memory man-
agement system based on the work of Tofte and Talpin. The region-based
memory manager allows you some real-time control over memory man-
agement and can significantly reduce space overheads when compared to
a conventional garbage collector. Furthermore, the region type system en-
sures the same safety properties as a collector: objects cannot be accessed
outside of their lifetimes.

This manual is meant to provide an informal introduction to Cyclone.
We have tried to write the manual from the perspective of a C programmer
who wishes either to port code from C to Cyclone, or develop a new sys-
tem using Cyclone. Therefore, we assume a fairly complete understanding
of C.

Obviously, Cyclone is a work in progress and we expect to make sub-
stantial changes to the design and implementation. Your feedback (and

5

patience) is greatly appreciated.

1.1 Acknowledgements

The people involved in the development of Cyclone are now at Harvard,
AT&T, Maryland, and Washington; much work began at Cornell. Dan
Grossman, Trevor Jim, and Greg Morrisett worked out the initial design
and implementation, basing the language to some degree on Popcorn, a
safe-C-like language that was developed at Cornell as part of the Typed
Assembly Language (TAL) project. Mike Hicks ported a number of li-
braries and programs to Cyclone, helped with the configuration and in-
stallation procedures, and has been the lead on adding unique and reference-
counted pointers to Cyclone, among other things. Mathieu Baudet con-
tributed the bulk of the code for the link-checker. Matthew Harris did
much of the hard work needed to wrap and import the necessary libraries.
Yanling Wang ported bison and flex to Cyclone. James Cheney has added
support for representation types, singleton ints, marshalling support, etc.
Nikhil Swamy added support for reaps and the cyclone-inf mode. All of
these people have also contributed by finding and fixing various bugs. A
number of other people have also helped to find bugs and/or contributed
key design ideas including Mujtaba Ali, Fred Smith, Nathan Lutchansky,
Rajit Manohar, Bart Samwell, Emmanuel Schanzer, Frances Spalding, Jeff
Vinocur, and David Walker.

2 Cyclone for C Programmers

We begin with a quick overview of Cyclone, suitable for those who already
know how to program in C. We'll explain some of the ways that Cyclone
differs from C and some of the reasons why; you should come away with
enough knowledge to start writing, compiling, and running your own Cy-
clone programs. We assume that the Cyclone compiler is already installed
on your system (see Appendix E if you need to install the compiler).

2.1 Getting Started

Here’s a Cyclone program that prints the string “hello, world.”

http://www.cs.cornell.edu/talc
http://www.cs.cornell.edu/talc

#include <stdio.h>

int main () {
printf ("hello, world\n");
return 0;

}

It looks rather like a C program—in fact, a C compiler will happily
compile it. The program uses #include to tell the preprocessor to import
some standard definitions, it defines a distinguished function main that
serves as the entry point of the program, and it uses the familiar print £
function to handle the printing; all of this is just as in C.

To compile the program, put it into a file hello.cyc, and run the
command

cyclone -o hello hello.cyc

This tells the Cyclone compiler (cyclone) to compile the file hello. cyc;
the —o flag tells the compiler to leave the executable output in the file
hello (or, in Windows, hello.exe). If all goes well you can execute
the program by typing

hello
and it will print
hello, world

It’s interesting to compare our program with a version that omits the
return statement:

#include <stdio.h>

int main () {
printf ("hello, world\n");
}

A C compiler will compile and run this version without warning. In
contrast, Cyclone will warn that you have failed to return an int. Cyclone
only warns you when you fail to return an integral type (char, short,
int, etc.) but it gives an error if you fail to return other types (e.g., pointer

7

types). This requirement of definite return ensures type safety while impos-
ing minimal constraints on a programmer porting C code to Cyclone.
Definite return reflects Cyclone’s concern with safety. The caller of
the function expects to receive a value of the return type; if the function
does not execute a return statement, the caller will receive some incor-
rect value instead. If the returned value is supposed to be a pointer, the
caller might try to dereference it, and dereferencing an arbitrary address
can cause the program to crash. So, Cyclone requires a return statement
with a value of the return type whenever type safety can be compromised.

2.2 Pointers

Programs that use pointers properly in C can be both fast and elegant.
But when pointers are used improperly in C, they cause core dumps and
buffer overflows. To prevent this, Cyclone introduces different kinds of
pointers and either (a) puts some restrictions on how you can use pointers
of a given kind or (b) places no restrictions but may insert additional run-
time checks. Here we present a basic overview of Cyclone pointers; they
are summarized and covered in more detail in Section 3.

Nullable Pointers

The first kind of pointer is indicated with a x, as in C. For example, if we
declare

int x = 3;
int »y = &x;

then y is a pointer to the integer 3 (the contents of x). The pointer, vy,
is represented by a memory address, namely, the address of x. To refer to
the contents of y, you use +y, so, for example, you can increment the value
of x with an assignment like

*y = *xy + 1;

This much is just as in C. However, there are some differences in Cy-
clone:

e You can’t cast an integer to a pointer. Cyclone prevents this be-
cause it would let you overwrite arbitrary memory locations. In Cy-
clone, NULL is a keyword suitable for situations where you would
use a (casted) 0 in C. The compiler accepts 0 as a legal possibly-null
pointer value, but using NULL is preferred.

e You can’t do pointer arithmetic on a * pointer. Pointer arithmetic in
C can take a pointer out of bounds, so that when the pointer is even-
tually dereferenced, it corrupts memory or causes a crash. (However,
pointer arithmetic is possible using @ fat and @zeroterm pointers.)

e There is one other way to crash a C program using pointers: you
can dereference the NULL pointer or try to update the NULL location.
Cyclone prevents this by inserting a null check whenever you deref-
erence a pointer (that is, whenever you use the *, —>, or subscript
operation on a pointer.)

These are drastic differences from C, particularly the restriction on pointer
arithmetic. The benefit is that you can’t cause a crash using * pointers in
Cyclone.

Fat Pointers

If you need to do pointer arithmetic in Cyclone, you can use a second kind
of pointer, called a fat pointer and indicated by writing the qualifier @fat
after the ». For example, here is a program that echoes its command-line
arguments:

#include <stdio.h>

int main(int argc, char *xQ@fat xQ@fat argv) {

argc——; argv++; /* skip command name =/

if (argc > 0) {
/* print first arg without a preceding space =/
printf ("%s", xargv) ;
argc——; argv++;

}

while (argc > 0) {
/* print other args with a preceding space =*/

printf (" %s",xargv);
argc——; argv++;

}

printf ("\n");

return 0;

}

Except for the declaration of argv, which holds the command-line ar-
guments, the program looks just like you would write it in C: pointer arith-
metic (argv++) is used to move argv to point to each argument in turn,
so it can be printed.

In C, argv would typically be declared with type char xx, a pointer
to a pointer to a character, which is thought of as an array of an array of
characters. In Cyclone, argv is instead declared with type char »@fatx@fat,
which is thought of in the same way: it is a (fat) pointer to a (fat) pointer
to characters. The difference between an unqualified pointer and a @fat
pointer is that a @ fat pointer comes with bounds information and is thus
“fatter” than a traditional pointer. Each time a fat pointer is dereferenced
or its contents are assigned to, Cyclone inserts both a null check and a
bounds check. This guarantees that a @fat pointer can never cause a
buffer overflow.

Because of the bounds information contained in @fat pointers, argc
is superfluous: you can get the size of argv by writing numelts (argv).
We’ve kept argc as an argument of main for backwards compatibility.

It's worth remarking that you can always cast a = pointer to a @fat
pointer (and vice-versa). So, it is possible to do pointer arithmetic on a
value of type , but only when you insert the appropriate casts to convert
from one pointer type to another. Note that some of these casts can fail
at run-time. For instance, if you try to cast a fat pointer that points to an
empty sequence of characters to char x, then the cast will fail since the
sequence doesn’t contain at least one character.

Finally, @ fat pointers are used so frequently in Cyclone, that there is
special character, ? (question mark) that you can use as an abbreviation
for x@fat. For instance, we could write the prototype for main as:

int main(int argc, char ?? argv);
instead of the more verbose:

int main(int argc, char x@fat x@fat argv);

10

Non-NULL Pointers

Another kind of pointer in Cyclone is the non-NULL pointer. A non-
NULL pointer is indicated by the qualifier @notnull. A @notnull pointer
is like an unqualified pointer, except that it is guaranteed not to be NULL.
This means that when you dereference a @notnull pointer or assign to
its contents, a null check is sometimes unnecessary.

@notnull pointers are useful in Cyclone both for efficiency and as
documentation. This can be seen at work in the standard library, where
many functions take @notnull pointers as arguments, or return @notnull
pointers as results. For example, the getc function that reads a character
from a file is declared,

int getc(FILE *@notnull);

This says that getc expects to be called with a non-NULL pointer to a
FILE. Cyclone guarantees that, in fact, when the getc function is en-
tered, its argument is not NULL. This means that getc does not have to
test whether it is NULL, or decide what to do if it is in fact NULL.

In C, the argument of getc is declared to have type FILE x, and pro-
grammers can call getc with NULL. So for safety, C's getc ought to
check for NULL. In practice, many C implementations omit the check;
getc (NULL) is an easy way to crash a C program.

In Cyclone, you can still call get c with a possibly-NULL FILE pointer
(a FILE x). However, Cyclone insists that you insert a check before the
actual call:

FILE +f = fopen("/etc/passwd","r");
int ¢ = getc((FILE *@notnull) f);

Here £ will be NULL if the file /et c/passwd doesn’t exist or can’t be read.
So, in Cyclone £ mustbe cast to FILE *@notnull before the call to getc.
The cast causes a null check. If you try to call getc without the cast,
Cyclone will insert one for you automatically, and warn you that itis doing
s0.

These warnings do not mean that your program is unsafe—after all,
Cyclone has inserted the check for you. However, you should pay atten-
tion to the warnings because they indicate a place where your program
could suddenly halt (if the check fails), and because the inserted checks
can slow down your program. It's worth rewriting your code to handle

11

the error case better, or even eliminate the null check. For instance, if we
rewrite the code above so that we explicitly test whether or not fopen
succeeds in returning a non-NULL file descriptor:

FILE »f = fopen("/etc/passwd","r");

if (£ == NULL) {
fprintf (stderr, "cannot open passwd file!");
exit (-1);

}

int ¢ = getc(f);

then Cyclone no longer issues a warning at the call to get c and the result-
ing code does not have to do a null check.

If you call getc with a FILE x@notnull, of course, no check is re-
quired. For example, stdin is a FILE *x@notnull in Cyclone, so you
can simply call getc (stdin). In Cyclone you will find that many func-
tions return «@notnull pointers, so many of the pointers you deal with
will already be x@notnull pointers, and neither the caller nor the called
function needs to do null checks—and this is perfectly safe.

Like @fat pointers, @notnull pointers are so useful, Cyclone pro-
vides an abbreviation. Instead of writing FILE *@notnull, you can sim-
ply write FILE @ when you want to write the type of a non-NULL pointer
toaFILE.

Zero-Terminated Pointers

Fat pointers support arbitrary pointer arithmetic and subscripting, but
they don’t have the same representation as pointers in C. This is because
we need extra information to determine the bounds and ensure that a sub-
script or dereference is in bounds. Unfortunately, this change in repre-
sentations can make it difficult to interface with legacy C code where the
representations might not be easily changed.

Fortunately, Cyclone supports one more pointer type where the rep-
resentation matches C’s and yet supports a limited form of pointer arith-
metic and subscripting: the zero-terminated pointer. A zero-terminated
pointer is a pointer to a sequence of elements that are guaranteed to be
terminated with a zero. C’s strings are a good example. In Cyclone, the
type of C’s strings can be written as char *@zeroterm. The @zeroterm
qualifier indicates that the pointer points to a zero-terminated sequence.

12

The qualifier is orthogonal to other qualifiers, such as @fat or @notnull,
so you can freely combine them.

Because C strings arise so frequently, the types char «,char x@notnull,
and char x@fat areby default qualified with @zeroterm. You can over-
ride the @zeroterm qualifier on char pointers by putting in an explicit
@nozeroterm qualifier (e.g., char x@nozeroterm). Pointers to other
types (e.g., int «) have a default qualifier of @nozeroterm.

If xisa « @zeroterm pointer, you can use pointer arithmetic on it, as
in x+i. However, the compiler inserts checks to ensure that (a) i is non-
negative and (b) there is no zero between x[0] and x[1-1] inclusive.
This ensures that you can’t read past the terminating zero. In addition,
when writing to a zero-terminated pointer, the compiler inserts checks to
ensure that you don’t replace the final zero with some other value. This is
crucial for ensuring that a buffer overrun cannot occur. Asin C, x[1] is
equivalent to x+1i, so subscripts come with the same checks.

Because of these checks, subscripts and pointer arithmeticon » @zeroterm
can be fairly expensive. In particular, if you are not careful, you can turn
what appears to be an O(n) algorithm into an O(n-squared) one. You can
avoid this overhead by casting the pointer to a @ fat zero-terminated pointer.
This computes the length of the sequence once and then uses the bounds
information associated with the fat pointer to do any bounds checks.

Cyclone’s constraints on zero-terminated pointers mean that you have
to be careful when porting code from C. For instance, consider the follow-
ing function:

void foo(char s, int offset) {

unsigned int len = strlen(s);
for (unsigned int i = 0; offset+i < len; i++)
sloffset+i] = "a’;

}

This code can be quite expensive when of fset is large because the com-

piler must check that there is no intervening zero between s [0] and s [offset+1i]
for each iteration of the loop. You can get rid of this overhead by rewriting

the code as follows:

void foo(char =*s, int offset) {
unsigned int len = strlen(s);
s = s + offset;

13

for (unsigned int i = 0; offset+i < len; i++, s++)
x5 = /ar,.

}

Now the compiler is only checking that xs is not zero when it does the
increment s++. In addition, however, the compiler is checking each time
youdo xs = ’a’ that xs is not zero, because then you could overwrite
the zero with an ” a’ and potentially step outside the bounds of the buffer.

One way to get rid of all of these checks is to cast s to a non-zero-
terminated fat pointer before entering the loop. When you cast a zero-
terminated pointer to a non-zero-terminated fat pointer, the compiler cal-
culates the length of the sequence once, decrements it by one, and then
builds an appropriate fat pointer with this bounds information. When you
write using the fat pointer, bounds checks (not zero checks) keep you from
writing any value over the zero. Furthermore, if you write the code in a
straightforward fashion using subscripting, the compiler is more likely to
eliminate the bounds checks. Here is an example:

void foo(char =*s, int offset) {
char xQ@fat @nozeroterm fat_s = (char *@fat @nozeroterm)s;
unsigned int len;
fat_s += offset;
len = numelts(fat_s);
for (unsigned int i =
fat_s[i] = "a’;

0; 1 < len; i++)

}
The Cyclone compiler generates code that works like the following C code:

struct _tagged_arr {
char xbase;
char xcurr;
char =xlast;

i

void Cyc_foo(char =xs,int offset) {
struct _tagged_arr fat_s = {s, s, s+strlen(s)}};
unsigned int len;
fat_s.curr += offset;

14

if (fat_s.curr < fat_s.base || fat_s.curr >= fat_s.last)

len = 0;
else
len = fat_s.last - fat_s.curr;
{ unsigned int i = 0;
for(0; 1 < len; i++)
fat_s.curr[i] = "a’;

}

Notice that here, the compiler is able to eliminate all bounds checks within
the loop and still ensure safety.

Bounded Pointers

A pointer type can also specify that it points to a sequence of a particular
(statically known) length using the @numelts qualifier. For instance, we
can write:

void foo(int *@numelts (4) arr);

Here, the parameter arr is a pointer to a sequence of four integer val-
ues. Both the non-null and nullable pointers (but not fat pointers) support
explicit sequence bounds that are tracked statically. Indeed, both pointer
kinds always have length information and when you write “int «” this
is just short-hand for “int *@numelts(1)”

Bounded pointers are most often constructed from arrays. In particu-
lar, whenever you pass an array as a parameter to a function, it is promoted
automatically to a pointer, following the rules of C. This pointer will have
a sequence bound that is the same as the length of the array. Here is an
example of calling foo above:

int x[4] = {1,2,3,4};

int yI[8] = {1,2,3,4,5,6,7,8};
foo(x);

fool(y);

In the first call, the parameter x being passed to foo is automatically cast
to type int x@numelts (4), which is the type expected by foo. In the
second case, the type of y is automatically cast to type int *«Q@numelts (8).

15

Since 8 > 4, the call is safe and so Cyclone accepts it but emits a warning
“implicit cast to shorter array.” Finally, the following code will be rejected,
because the pointer being passed is too short:

int bad([2] = {1,2};
foo(bad); // does not typecheck

Finally, bounded pointers can also be used to correlate a pointer to an
array whose length is not known statically with a variable that defines it.
For example, C programmers often write code like the following:

int sum(int num, int *p) {
int a = 0;
for (unsigned i = 0; i < num; i++)
a += pl[i];
}

Here, num is the length of the array pointed at by p. In Cyclone, this rela-
tionship can be expressed by giving sum the following type (the body of
the function is the same):

int sum(tag_t<'n> num,
int x@notnull @numelts (valueof(‘'n)) p) {

The type of num is specified as tag_t< ‘n>. This simply means that num
holds an integer value, called ‘n, and the number of elements of p is equal
to n. This form of dependency is common enough that it can be abbrevi-
ated as follows:

int sum(tag_t num, int p[num]);

and the compiler will fill in the missing information.

A bounded pointer paired with a tag_t is quite similar to a fat pointer.
Indeed, you can convert between the two using the library functions mk fat
and mkthin. See Appendix C for a further description.

Initializing Pointers

Pointers must be initialized before they are used to ensure that unknown
bits do not get used as a pointer. This requirement goes for variables that
have pointer type, as well for arrays, elements of arrays, and for fields in

16

structures. Conversely, data that does not have pointer type need not be
initialized before it is used, since doing so cannot result in a violation of
safety. This decision adheres to the philosophy of C, but diverges from
that of traditional type-safe languages like Java and ML. The rules for ini-
tialization of pointers used by Cyclone are described in Section 12.

2.3 Regions

Another potential way to crash a program or violate security is to deref-
erence a dangling pointer, which is a pointer to storage that has been deal-
located. These are particularly insidious bugs because the error might not
manifest itself immediately. For example, consider the following C code:

struct Point {int x; int y;};

struct Point #*newPoint (int x,int y) {
struct Point result = {x,vy};
return &result;

void foo(struct Point #*p) {
p—>y = 1234;

return;

}

void bar () {
struct Point *p = newPoint (1,2);
foo(p);

}

The code has an obvious bug: the function newPoint returns a pointer to
a locally-defined variable (result), even though the storage for that vari-
able is deallocated upon exit from the function. That storage may be re-
used (e.g., by a subsequent procedure call) leading to subtle bugs or secu-
rity problems. For instance, in the code above, after bar calls newPoint,
the storage for the point is reused to store information for the activation
record of the call to foo. This includes a copy of the pointer p and the
return address of foo. Therefore, it may be that p—>y actually points to

17

the return address of foo. The assignment of the integer 1234 to that loca-
tion could then result in foo “returning” to an arbitrary hunk of code in
memory. Nevertheless, the C type-checker readily admits the code.

In Cyclone, this code would be rejected by the type-checker to avoid
the kind of problems mentioned above. The reason the code is rejected is
that the Cyclone compiler tracks object lifetimes and ensures that a pointer
to an object can only be dereferenced if that object has not been deallo-
cated.

Cyclone achieves this by assigning each object a symbolic region that
corresponds to the area of memory in which the object is allocated. Cy-
clone also tracks, for every pointer, what region it points into. The region
pointed to can be written as part of the pointer type, but usually the re-
gion can be omitted—the compiler is smart enough to discover the region
automatically in many cases.

For example, the variable result in our code above lives within a
region that corresponds to the invocation of the function newPoint. We
write the name of the region explicitly using a back-quote, asin ‘newPoint.
Because result lives in region ‘newPoint, the expression &result isa
pointer into region ‘newPoint. The full Cyclone type of sresult, with
the explicit region, is st ruct Point x @region(‘newPoint).

A region that corresponds to a lexical block, like an activation record,
is referred to as a stack region, since it corresponds to a piece of the runtime
stack. When control flow exits a block, the storage (i.e., the stack region)
for that block is deallocated. Cyclone keeps track of the set of regions that
are allocated and deallocated at every control-flow point and ensures that
you only dereference pointers to allocated regions. For example, consider
the following fragment of (bad) Cyclone code:

1 int £() {

2 int x = 0;

3 int x@region(‘f) y = &x;
4 L:{ int a = 0;

5 y = &aj;

6 }

7 return *y;

8 }

In the function f above, the variables x and y live within the region *f
because they are declared in the outermost block of the function, and be-

18

cause the default region name for the block of a function is ‘<function
name>. The storage for those variables will live as long as the invocation
of the function. Note that since y is a pointer to x, the type of y is int
*@region (‘f),indicating that y points into region “f.

The variable a does not live in region ‘£, because it is declared in an
inner block, which we have labeled with L. The storage for the inner block
L may be deallocated upon exit of the block, before the function itself re-
turns. To be more precise, the storage for a is deallocated at line 7 in the
code. Thus, it is an error to try to access this storage in the rest of the
computation, as is done on line 7.

Cyclone detects the error because it gives the expression &a the type
int x@region (‘L), meaning that the value is a pointer into region L.
So, the assignment y = &a fails to type-check because y expects to hold
a pointer into region ‘£, not region ‘L. The restriction, compared to C, is
that a pointer’s type indicates one region instead of all regions.

Region Inference

If you had to write a @ region qualifier on every pointer type, then writing
code would be unpleasant. Fortunately, Cyclone provides a number of
mechanisms to cut down on the region annotations you have to write.

First off, you can omit the @region qualifier keyword and simply
write the region name (e.g., ‘r) as long as you put the region name after
any other qualifiers. For instance, instead of writing “int *@notnull
@region (‘r)” we can simply write “int @ ‘r”. For clarity, we will of-
ten use an explicit @region qualifier, but you'll find that the libraries and
other example programs frequently use the abbreviations.

In addition, Cyclone often figures out the region of a pointer without
the programmer providing the information. This is called region inference.
For instance, we can rewrite the function £ above without any region an-
notations, and without labeling the blocks:

1 int f£() {

2 int x = 0;

3 int xy = &x;
4 { int a = 0;
5 y = &aj;

6 }

19

7 return *y;
8 }

Cyclone can still figure out that y is a pointer into region ‘f, and &a is a
pointer into a different (now anonymous) region, so the code should be
rejected.

As we will show below, occasionally you will need to put explicit re-
gion annotations into the code to convince the type-checker that some-
thing points into a particular region, or that two things point into the same
region. In addition, it is sometimes useful to put in the region annotations
for documentation purposes, or to make type errors less cryptic. See Sec-
tion 6 for more information about region inference.

You need to understand a few more details about regions to be an ef-
fective Cyclone programmer: the heap region, LIFO regions, region poly-
morphism, and default region annotations for function parameters. The
following sections give a brief overview of these topics. Information about
additional region-based constructs, including the unique and reference-
counted regions, and dynamic regions, can be found in Section 8.

The Heap Region

There is a special region for the heap, written ‘H, that holds all of the
storage for top-level variables, and for data allocated via new ormalloc.
For instance, if we write the following declarations at the top-level:

struct Point p = {0,1};
struct Point *ptr = &p;

then Cyclone figures out that ptr points into the heap region. To reflect
this explicitly, we can put the region in the type of pt r if we like:

struct Point p = {0,1};
struct Point *@region(‘H) ptr = &p;

As another example, the following function heap-allocates a Point
and returns it to the caller. We put the regions in here to be explicit:

struct Point *@region(‘H) good_newPoint (int x,int y) {
struct Point *@region(‘H) p =
malloc (sizeof (struct Point));

20

p—>x = X;
p—>y Yi
return p;

}
Alternatively, we can use new to heap-allocate and initialize the result:

struct Point *@region(‘H) good_newPoint (int x,int y) {
return new Point{x,v};

LIFO Regions

Storage on the stack is implicitly allocated and recycled when you enter
and leave a block. Storage in the heap is explicitly allocated via new or
malloc, but there is no support in Cyclone for explicitly freeing an object
in the heap. The reason is that Cyclone cannot in general track the life-
times of individual objects within the heap accurately, so it can’t be sure
whether dereferencing a pointer into the heap would cause problems. In-
stead, unless otherwise specified, a conservative garbage collector is used
to reclaim the data allocated in the heap. We also support unique pointers
and reference-counted pointers that programmers can safely free manually,
but we defer discussion of these features until Section 8.

Using a garbage collector to recycle memory is the right thing to do for
most applications. For instance, the Cyclone compiler uses heap-allocated
data and relies upon the collector to recycle most objects it creates when
compiling a program. But a garbage collector can introduce pauses in
the program, and as a general purpose memory manager, might not be
as space- or time-efficient as routines tailored to an application.

To address these applications, Cyclone provides support for LIFO re-
gions. A LIFO region is similar to a stack region in that its lifetime is
lexically-scoped (last-in-first-out, or LIFO) but permits dynamic alloca-
tion. Consider the following syntax:

{ region<‘r> h;

}

This declares a new region ‘r along with a region handle h. The handle
can be used for dynamically-allocating objects within the region ‘r. Like

21

a stack region, all of the storage for the region is deallocated at the point
of the closing brace. Unlike stack regions, the number (and size) of objects
that you allocate into a LIFO region is not fixed at compile time. In this
respect, LIFO regions are more like the heap. You can use the rnew (h)
and rmalloc (h, ...) operations to allocate objects within a growable
region, where h is the handle for the region.

For instance, the following code takes an integer n, creates a new dy-
namic region and allocates an array of size n within the region using rnew.

int k(int n) {
int result;
{ region<‘r> h;
int ?arr = rnew(h) {for 1 < n : 1i};
result = process(h, arr);
}

return result;

}

It then passes the handle for the region and the array to some processing
function. Note that the processing function is free to allocate objects into
the region ‘r using the supplied handle. After processing the array, we
exit the region which deallocates the array, and then return the calculated
result.

LIFO regions are particularly useful in this circumstance; i.e. when you
want the result of a function call to be allocated in the caller, but you don’t
know how much space you’ll need.l An another example, consider the
following usage of the Cyclone library function rprint f:

{ region<‘r> h;

char ?'H s = get_username () ;
char ?'r z = rprintf (h,"hello %s\n");
emit (z);

}

After allocating the region and acquring a user’s name, the region han-
dle is passed to the library function rprintf. rprintf is like sprintf,
except that it does not print to a fixed-sized buffer; instead it allocates a
buffer in a region, places the formatted output in the buffer, and returns a
pointer to the buffer. In the example above, z is initialized with a pointer

22

to the string “hello” followed by the user’s name; z is allocated in h’s re-
gion. Unlike sprintf, there is no risk of a buffer overflow, and unlike
snprintf, there is no risk of passing a buffer that is too small. Moreover,
the allocated buffer will be freed when the region goes out of scope, just
as a stack-allocated buffer would be.

Finally, it is worth remarking that it may help to think of the heap as
just a LIFO region with unbounded scope. Indeed, you can use the global
variable Core: :heap_region as a handle on the heap, and new and

malloc(...) are just abbreviations for rnew (Core: :heap_region)
and rmalloc (Core: :heap_region, ...) respectively.
Region Polymorphism

Another key concept you need to understand is called region polymorphism.
This is just a fancy way of saying that you can write functions in Cyclone
that don’t care which specific region a given object lives in, as long as it’s
still alive. For example, the function foo from the beginning of this section
is a region-polymorphic function. To make this clear, let us re-write the
foo function (page 17) making the region of its argument explicit:

void foo(struct Point x@region(‘r) p) {
p—>y = 1234;
return;

}

The function is parameterized by a region variable * r, and accepts a pointer
toaPoint thatlivesinregion ‘r. When calling foo, ‘r can be instantiated
with any region you like, including the heap ‘H, or a region local to a
function. So, for instance, we can write the following:

void g() {
struct Point p = {0,1};
struct Point *@region(‘g) ptrl = &p;
struct Point *@region(‘H) ptr2 = new Point{2,3};
foo(ptrl);
foo(ptr2);
}

Note that in the first call to foo, we are passing a pointer into region ‘g,
and in the second call to foo, we are passing in a pointer into the heap. In

23

the first call, ‘r is implicitly instantiated with ‘g, and in the second call,
with “H.

Region polymorphism is a specific form of paramteric polymorphism which
Cyclone supports in general, as we describe below.

Default Region Annotations

Cyclone automatically assigns region variables to function arguments that
have pointer type, so you rarely have to write them. For instance, foo can
be written simply as:

void foo (struct Point x p) {
p—>y = 1234;
return;

}
As another example, if you write the following:

void h(struct Point x pl, struct Point *» p2) {
pl->x += p2->x;
p2—->x +t= p2->y;

}

then Cyclone fills in the region parameters for you by assuming that the
points p1 and p2 can live in any two regions, and so it generates assigns
fresh names for the region variables of p1 and p2, e.g. something like *r1
and “r2. To make this explicit, we would write:

void h(struct Point x@region(‘rl) pl,
struct Point xW@region(‘r2) p2) {
pl->x += p2->x;
p2->x += p2->y;
}

Now we can call h with pointers into any two regions, or even two point-
ers into the same region. This is because the code is type-correct for all
regions ‘rl and ‘r2.

Occasionally, you will have to put region parameters in explicitly. This
happens when you need to assert that two pointers point into the same
region. Consider for instance the following function:

24

void Jj(struct Point x pl, struct Point *» p2) {
pl = p2;
}

Cyclone will reject the code because it assumes that in general, p1 and p2
might point into different regions. The error is roughly the following:

foo.cyc:2: type mismatch:
struct Point *‘'GRO != struct Point *‘GR1
‘GR1 and ‘GRO are not compatible.
(variable types are not the same)

Cyclone has picked the name GR1 for p1’s region, and GR2 for p2’s region.
That is, Cyclone fills in the missing regions as follows:

void Jj(struct Point x@region(‘GR1l) pl,
struct Point *@region (‘GR2) p2) {

pl = pz;
}
Now it is clear that the assignment does not type-check because the types
of p1 and p2 differ. In other words, ‘GR1 and ‘GR2 might be instantiated
with different regions, in which case the code would be incorrect. For
example, we could call j as follows:

void g () {
struct Point p = {0,1};
struct Point *@region(‘g) ptrl = &p;
struct Point *xW@region(‘H) ptr2 = new Point{2,3};
J(ptr2,ptrl);
}

Doing this would effectively allow us to assign ptrl to ptr2, which is
unsafe in general, since the heap outlives the stack region for g.

But you can require that j’s regions be instantiated with the same re-
gion by explicitly specifying the same explicit region variable for each
pointer. Thus, the following code does type-check:

void j(struct Point x@region(‘r) pl,
struct Point x@region(‘r) p2) {

pl = p2;

25

This would prevent the situation in function g above, since the arguments
passed to j must be allocated in the same region.

So, Cyclone assumes that each pointer argument to a function is in a
(potentially) different region unless you specify otherwise. The reason we
chose this as the default is that (a) it is often the right choice for code, (b)
it is the most general type in the sense that if it does work out, clients will
have the most lattitude in passing arguments from different regions or the
same region to the function.

What region variable is chosen for return-types that mention pointers?
Here, there is no good answer because the region of the result of a function
cannot be easily determined without looking at the body of the function,
which defeats separate compilation of function definitions from their proto-
types. Therefore, we have arbitrarily chosen the heap as the default region
for function results. Consequently, the following code type-checks:

struct Point * good_newPoint (int x,int y) {
return new Point{x,v};

}

This is because the new operator returns a pointer to the heap, and the
default region for the return type is the heap.

This also explains why the newPoint function (page 17) for allocating
anew Point does not type-check:

struct Point #*newPoint (int x,int y) {
struct Point result = {x,vy};
return &result;

}

The expression & result is a pointer into region ‘newPoint but the result
type of the function must be a pointer into the heap (region ‘H).

If you want to return a pointer that is not in the heap region, then you
need to put the region in explicitly. For instance, the following code:

int * id(int =*x) {
return x;

}

will not type-check. To see why, let us rewrite the code with the default
region annotations filled in. The argument is assumed to be in a region

26

‘GR1, and the result is assumed to be in the heap, so the fully elaborated
code is:

int *@region(‘H) id(int *@region(‘GR1l) x) {
return x;

}

Now the type-error is manifest. To fix the code, we must put in explicit
regions to connect the argument type with the result type. For instance,
we might write:

int *x@region(‘r) id(int *x@region(‘r) x) {
return Xx;

}
or using the abbreviation:

int *‘'r id(int *‘r x) {
return Xx;

Region Summary

In summary, each pointer in Cyclone points into a given region and this
region is reflected in the type of the pointer. Cyclone will not let you deref-
erence a pointer into a deallocated region. The lexical blocks declared in
functions correspond to one type of region (a stack region), and simply
declaring a variable within that block allocates storage within the region.
The storage is deallocated upon exit of the block. LIFO regions are sim-
ilar, except that a dynamic number of objects can be allocated within the
region using the region’s handle. Both stack and LIFO regions have struc-
tured lifetimes. Finally, the heap region ‘H is a special region whose dead
objects are garbage collected.

Region polymorphism and region inference make it possible to omit
many region annotations on types. By default, Cyclone assumes that unan-
notated pointer arguments in functions may live in distinct regions, and
that unannotated result pointers are in the heap. These assumptions are
not perfect, but programmers can fix the assumptions by providing ex-
plicit region annotations, and they permit Cyclone files to be separately
compiled.

27

The region-based type system of Cyclone is perhaps the complicated
aspect of the language. In large part, this is because memory management
is a difficult and tricky business. We have attempted to make stack allo-
cation and region polymorphic functions simple to use without sacrific-
ing programmer control over the lifetimes of objects and without (always)
having to resort to garbage collection. As more advanced features, we also
provide even finer control over object lifetimes, but at the expense of more
work from the programmer, using the unique region and reference-counted
regions. In turn, these can be used to create dynamic regions, which support
run-time allocation like LIFO regions, but have dynamic scope. For more
information on these, and regions in general, see Section 8.

2.4 Arrays

Arrays in Cyclone are much as in C, and have a similar relationship to
pointers, as we discussed earlier. However, there are more ways to create
arrays in Cyclone, but with some restrictions on how they are initialized.

One can always declare an array and provide an initializer as in C. For
instance:

int foo[8] = {1,2,3,4,5,6,7,8%};
char s[4] = "bar";

are both examples from C for creating arrays. Note that Cyclone follows
C’s conventions here, so that if you declare arrays as above within a func-
tion, then the lifetime of the array coincides with the activation record of
the enclosing scope. In other words, such arrays will be stack-allocated.
Also note that by default, char arrays are not considered zero-terminated.
To make them so, you must add the @zeroterm qualifier following the
size of the array, as in

char s[4] @zeroterm = "bar";

In both cases, the size of the array must include the zero terminator.

To create heap-allocated arrays (or strings) within a Cyclone function,
you should either use “new” or “rnew” operator with either an array ini-
tializer or an array comprehension. The following code demonstrates this:

// foo is a pointer to a heap-allocated array
int * @numelts(8) foo = new {1,2,3,4,5,6,7,8%};

28

// s 1s a checked pointer to a heap-allocated string
char » @fat s = new {'b’,"’a’,’'r",0};

// a non-null pointer to the first 100 even numbers
int * @notnull @numelts(100) evens = new {for i < 100

The last initializer is an array comprehension. The syntax is a simplified
for loop: it declares the iterator variable i and its bound 100, indicating
that i will iterate between 0 and 99. The part following the colon is the
expression used to initialize the ith element of the array. In this example,
the initializer is equivalent to writing

2%1};

int * @notnull @numelts (100) evens = new {0,2,4,6,...,198};

Where the . . . represents the remaining even numbers in the sequence.
Finally, we note that it is not possible to create arrays that contain point-
ers without initializing them first. This is just as with normal pointers as
discussed earlier. Moreover, Cyclone requires that pointerful arrays are
initialized all at once, rather than one statement at a time. This is because
Cyclone is not smart enough to know whether you have initialized an en-
tire array, in general. For example, the following code would be rejected:

void f(int * p) {
int *x[2];
x[0] = p;
x[1] = p;

}

Arrays that do not contain pointers need not be completely initialized in
general to ensure safety, so how they are initilaized is up to the program-
mer.

2.5 Structs

Cyclone supports struct types just as in C. Quite often, a C struct
declaration will be accepted without change by the Cyclone compiler. Cy-
clone supports two extensions to struct types in C: tuples, which are
lightweight, “unnamed” structs, and parameterization for creating more

29

generic datastructures. We consider tuples below, and delay talking about
parameterization until a bit later;

Tuples are like structs that need not be declared in advance; they have
member or field names that are implicitly 0, 1, 2, 3, etc. For example, the
following code declares x to be a 3-tuple of an integer, a character, and a
boolean, initialized with the values 42, ’ z’ , and t rue respectively. It then
checks to see whether the third component in the tuple is t rue (it is) and
if so, increments the first component in the tuple.

S (int, char,bool) x = $(42,’z’,true)

The above code would be roughly equivalent to writing:

struct {int £0; char fl; bool £f2;} x = {42,'z’,true};
if (x.£2)
x.f£1++;

Thus, tuple types are written $ (typel, ..., typen), tuple construc-
tor expressions are written $ (expl, ..., expn), and extracting the ith
component of a tuple is written using subscript notation exp [1-1]. Note
that, consistent with the rest of C, the members start with 0, not 1.

Unlike structs, tuple types are treated equivalent as long as they are
structurally equivalent. As in C, struct types are equivalent only if they
have the same tag or name. (Note that in C, all struct declarations have a
tag, even if the compiler has to generate one.)

2.6 Unions

It’s often necessary to write a function that accepts an argument with more
than one possible type. For example, in

printf ("%d4d", x) ;
x should be an integer, but in

printf ("%s", x) ;

30

x should be a pointer to a sequence of characters.

If we call printf ("%$s", x) with an integer %, instead of a pointer
x, the program will likely crash. To prevent this, most C compilers treat
printf specially: they examine the first argument and require that the
remaining arguments have the appropriate types. However, a compiler
can’t check this if print f isn’t called with a literal format string:

printf (s, x);

where s is a string variable. This means that in C, programs that use
printf (or scanf, or a number of related functions) are vulnerable to
crashes and corrupted memory. In fact, it’s possible for someone else to
crash your program by causing it to call print f with arguments that
don’t match the format string. This is called a format string attack, and
it’s an increasingly common exploit.

Tagged Unions

Cyclone provides tagged unions so that you can safely write functions that
accept an argument with more than one possible type. Like a C union, a
Cyclone @tagged union isa type that has several possible cases. Here’s
a simple example:

@tagged union T {
int Integer;
const char x@fat String;
bi
union T x = {.Integer = 3};
union T y = {.String = "hello, world"};

This declares a new tagged union type T, that can hold either an integer
or a string (remember, a literal string can always be converted to a char
«@fat in Cyclone). It also declares to union T values x and y and initial-
izes them with an integer and string respectively.

Just as with C unions, you can read and write any member of a tagged
union. However, to prevent security holes, Cyclone enforces the property
that you can only read the last member written. This prevents you from
accidentally treating an integer as if it’s a string or some other kind of
pointer.

31

Cyclone enforces this safety property by inserting a hidden tag into the
union (hence the @tagged qualifier) You can test the tag by using the
built-in tagcheck function. For instance, here is a function that uses the
real printf to safely print out the contents of a union T value, regard-
less of its contents:

bool printT (union T w) {
if (tagcheck (w.Integer))
printf ("%d",w);
else
printf ("%$s",w);

}

Note that tagcheck (w. Integer) doesnot return the value of the Integer
member, but rather returns true if and only if the Integer member was
the last member written (and is thus safe to read.)

Each write to a tagged union member causes the hidden tag to be up-
dated, and each read is preceded by a check to ensure that the member
was the last one written. If you attempt to read some member other than
the last one written, then the Mat ch exception is thrown. For example, the
following code writes the St ring member and then attempts to read the
Integer member, so it will throw a Match exception:

union T aj;

int x;

a.String = "hello, world";
/* Next line fails =/

x = a.Integer + 3;

When you have a big union, it can be awkward to use t agcheck to test
the hidden tag. You might accidentally test the wrong member or forget to
cover a member. In these cases, its probably best to use pattern matching to
determine the tag and to extract the underlying value. For example, here
is the function printT coded with pattern matching:

void printT (union T a) {
switch (a) {

case {.Integer = i}: printf ("%d",i); return;
case {.String = s}: printf("%$s",s); return;

}

32

The argument a has type union T, soitis either an Integer or String.
Cyclone extends switch statements with patterns that distinguish between
the cases. The first case,

case {.Integer = i}: printf("%d",i); return;

contains a pattern, {Integer = i}, that will match only T values where
the Integer member was the last one written. The variable i is bound
to the underlying integer, and it can be used in the body of the case. For
example, printT (x) will print 3, since x holds {.Integer = 3}, and
printT (y) will print hello, world. You can find out more about pat-
terns in Section 5.

Untagged Unions

Cyclone also supports untagged unions, but there are restrictions on how
they may be used to ensure safety. In particular, you can write any value
you like into a union, but you can only read out values that do not contain
pointers. This ensures that you don’t “spoof” a pointer with an integer or
some other bogus value. So, the general rule is that you can use a normal
C union if you aren’t using pointers, but you must use a @tagged union
if you are using pointers.

Datatypes

Cyclone provides another alternative to tagged unions for supporting het-
rogenous values called a datatype. Tagged unions require space propor-
tional to the largest member (plus room for the tag.) In contrast, a datatype
only requires space for the member being used. However, datatypes can-
not be updated with a different member and require a level of indirection.
Here is our example type re-coded using a datatype declaration:

datatype T {
Integer (int);
String(const char x@fat);

}i

datatype T.Integer x = Integer(3);
datatype T.String y = String("hello, world");

33

void printT (datatype TQ@ a) {
switch (a) {
case &Integer(i): printf ("%d",i); return;
case &String(s): printf("%s",s); return;
}

}

In general, a datatype declaration includes a set of constructors which
can be used to build datatype values. In this case, the constructors are
Integer and String. The Integer constructor takes an int and re-
turns a value of type datatype T.Integer. The String constructor
takes a string and returns a datatype T.String value.

Note that the types of x and y are not the same so we can’t interchange
them, nor can we pass them directly to the printT function. In particular,
their types reveal which constructor was used to build them. However, we
can manipulate pointers to these values in an abstract way. In particular,
we can pass a pointer to a datatype T.Integer value or a pointer to a
datatype T.String value anywhere that expects a datatype T. For
instance, we can write printT (&x) to print out the integer value in x,
and we can write printT (&y) to print out the "hello, world" string
iny.

We can use datatypes to implement a safe form of variable arguments
(or varargs), as described in Section 11. More information on Cyclone
unions is presented in Section 4.

2.7 C++, GCC and C99 Additions

C++, GCC and the ISO (C99 standard have some useful new features that
we have adopted for Cyclone. From C++ we borrow the idea of names-
paces for avoiding conflicts among library and program definitions. In
short, if a function £ is defined in a namespace Foo, then we would ac-
cess the function by referring to Foo: : £. The Cyclone standard libraries,
such as Core or List (covered in detail in Section C) are defined each
in their own namespace. Cyclone also provides polymorphism similar to
C++ templates.
Some of the GCC and C99 features that we currently support are:

34

http://web.onetelnet.ch/~twolf/tw/c/c9x_changes.html

e Statement expressions: There is a new expression form, ({ statement
expression }). The statement is executed first, then the expression,
and the value of the entire expression is the value of the expression

e Struct and Union expressions: If you've declared st ruct point{int
x; int y;}; thenyoucanwrite point{.x=expression, .y=expression}
to allocate and initialize a struct point. The same sort of constructors
may be used for unions, tagged or not, as we showed above.

e // comments as in Java or C++

e Declarations can appear in any statement position. It is not necessary
to wrap braces around the declaration of a local variable.

e For-statements can include a declaration. For instance:
for (int x=0; x < n; x++) {
}

We have attempted to follow the C99 standard fairly closely.

2.8 Additional Features of Cyclone

So far we have focused on features common to both Cyclone and GCC ex-
tensions of C. In the remainder of this tutorial, we overview some of the
new language features that have been added to Cyclone, inspired from
other programming languages. These include (a) exceptions (as in ML
and Java), (b) type inference for local variables (as in ML), (c) paramet-
ric polymorphism (as in ML and Generic Java), (d) structural subtyping,
to approximate object-oriented features, and (e) abstract and existential
types.

In many cases, these features are useful for writing simpler code. Some
features, like polymorphism and subtyping, are necessary to type-check
or port a number of potentially-unsafe C idioms, usually involving “void
«” or the like. We conclude the tutorial by enumerating some unsafe C
idioms that are not supported in Cyclone.

35

2.9 Exceptions

So far we’ve glossed over what happens when you try to dereference a
null pointer, or assign to an out-of-bounds @ fat pointer. We've said that
Cyclone inserts checks to make sure the operation is safe, but what if the
checks fail? For safety, it would be sufficient to halt the program and print
an error message—a big improvement over a core dump, or, worse, a pro-
gram with corrupted data that keeps running.

In fact, Cyclone does something a bit more general than halting with an
error message: it throws an exception. The advantage of exceptions is that
they can be caught by the programmer, who can then take corrective action
and perhaps continue with the program. If the exception is not caught, the
program halts and prints an error message. Consider our earlier example:

FILE +f = fopen("/etc/passwd","r");
int ¢ = getc((FILE *@notnull)f);

Suppose that thereisno file /et c/passwd; then fopen will return NULL,
and when f is cast to FILE *@notnull, the implied null check will fail.
The program will halt with an error message,

Uncaught exception Null_Exception

Null_Exception is one of a handful of standard exceptions used in Cy-
clone. Each exception is like a case of a datatype: it can carry along some
values with it. For example, the standard exception Invalid_argument
carries a string (which is a zero-terminated fat pointer). Exceptions can be
handled in t ry-catch statements, using pattern matching:

FILE f = fopen("/etc/passwd","r");
int c¢;
try {
c = getc((FILE x@notnull)f);
}
catch {
case &Null_FException:
printf ("Error: can’t open /etc/passwd\n");
exit (1) ;
case &Invalid_argument (s) :
printf ("Error: Invalid_argument (%$s)\n",s);

36

exit (1);
}

Here we’ve “wrapped” the call to getc in a try-catch statement. If £
isn’t NULL and the get c succeeds, then execution just continues, ignoring
the catch. Butif £ is NULL, then the null check will fail and the exception
Null_Exception will be thrown; execution immediately continues with
the catch (the call to getc never happens). In the catch, the thrown
exception is pattern-matched against the cases, in order. Since the thrown
exception is Null_Exception, the first case is executed here.

There is one important difference between an exception and a case of a
datatype: with a datatype, all of the cases have to be declared at once,
while a new exception can be declared at any time. So, exceptions are an
extensible datatype. You can specify that a datatype is extensible when
you declare it, using the @Gextensible qualifier. For example, here’s how
to declare a new exception:

@extensible datatype exn {
My_Exception (char x@fat);
bi

The type @extensible datatype exn is the type of exceptions, and
this declaration introduces a new case for the @Gextensible datatype
exn type: My_Exception, which carries a single value (a string). Excep-
tion values are created just like datatype values, and are thrown with a
throw statement. For example,

throw new My_Exception ("some kind of error");
or
throw new Null_Exception;

In practice, “Gextensible datatype” is quite a mouthful. So, Cy-
clone allows you abbreviate it with just datatype, as long as you've de-
clared a datatype as @extensible once. So a more typical way to declare
a new exception in Cyclone is

datatype exn {
My_Exception (char ?);
}i

37

210 Let Declarations and Pattern Matching

Sometimes, it’s painful to declare a variable because you have to write
down its type, and Cyclone types can be big when compared to their
C counterparts since they may include bounds information, regions, etc.
Therefore, Cyclone includes additional support for type inference using
let declarations. In particular, you can write:

int foo (int x) {
let vy = x+3;
let z = 3.14159;
return (int) (y*z);

}

Here, we declared two variables y and z using “1et.” When you use let,
you don’t have to write down the type of the variable. Rather, the compiler
infers the type from the expression that initializes the variable.

More generally, you can write “let pattern = exp;” to destruc-
ture a value into a bunch of variables. For instance, if you pass a tuple to
a function, then you can extract the components as follows:

int sum($ (int, int,int) args) {
let $(x,vy,z) = args;
return (x+y+z);

}

This feature is called pattern matching, and is inspired from functional
languages like ML and Haskell. Patterns can appear as part of 1et decla-
rations, exception clauses (as we saw above), and switch statements. For
example, we could rewrite the above code as follows using switch:

int sum($ (int,int, int) args) {
switch (args) {
case S$(x,vy,z):
return (x+y+z);

}

Notice there is no need for a default case, since args will always be a
valid 3-tuple. On the other hand, if we were to pass a pointer to the tuple,
rather than a tuple itself, we would have code as follows:

38

int sum($ (int, int, int) =*argsp) {
switch (argsp) {
case &$(x,vy,2):
return (x+y+z);
default:
return 0;

}

The switch statement first handles the situation that the argument is a
pointer to a tuple, designated by putting an & in front of the tuple pattern.
Recall that we did something similar when matching exceptions in catch
clauses, above. The default case is for when argsp is NULL. Many more
details about pattern matching are presented in Section 5.

211 Subtyping

Cyclone supports “extension on the right” and “covariant depth on const”
subtyping for pointers. This simply means that you can cast a value x from
having a type “pointer to a struct with 10 fields,” to “pointer to a struct
having only the first 5 fields.” For example, if we have the following defi-
nitions:

typedef struct Point {float x,y;} xpoint;
typedef struct CPoint {float x,y; int color;} =*cpoint;

float xcoord(point p) {
return p—->x;

}

then you can call xcoord with either a point or cpoint object. You can
also cast a pointer to a tuple having 3 fields (e.g., $ (int, bool, double) *)
to a pointer to a tuple having only 2 fields (e.g., $ (int,bool) *). In other
words, you can forget about the “tail” of the object. This allows a degree of
polymorphism that is useful when porting C code. In addition, you can do
“deep” casts on pointer fields that are const. (It is unsafe to allow deep
casts on non-const fields.) Also, you can cast a field from being non-const
to being const. You can also cast a constant-sized array to an equivalent

39

pointer to a struct or tuple. In short, Cyclone attempts to allow you to cast
one type to another as long as it is safe. Note, however, that these casts
must be explicit.

We expect to add more support for subtyping in the future (e.g., sub-
typing on function pointers, bounded subtyping, etc.)

2.12 Polymorphic Functions

Cyclone supports a fairly powerful form of parametric polymorphism. Those
of you coming from ML or Haskell will find this familiar. Those of you
coming from C++ will also find it somewhat familiar. The basic idea is
that you can write one function that abstracts the types of some of the
values it manipulates. For instance, consider the following two functions:

$ (char«,int) swapl ($(int,char*) x) {
return $(x[1], x[0]);

}

$(int,int) swap2(S$(int,int) x) {
return $(x[1], x[0]);

}

The two functions are quite similar: They both take in a pair (i.e., a
2-tuple) and return a pair with the components swapped. At the machine-
level, the code for these two functions will be exactly the same, assuming
that ints and char «s are represented the same way. So it seems silly
to write the code twice. Normally, a C programmer would replace the
definition with simply:

S (void *,void *) swapl ($(void =*,void *) x) {
return $(x[1], x[0]);
}

(assuming you added tuples to C). But of course, this isn’t type-safe be-
cause once I cast the values to void «, then I can’t be sure what type I'm
getting out. In Cyclone, you can instead write something like this:

$('b, ‘a) swap($(‘a, ‘b) x) {
return $(x[1],x[0]);
}

40

The code is the same, but it abstracts what the types are. The types ‘a
and ‘b are type variables that can be instantiated with any word-sized,
general-purpose register type. So, for instance, you can call swap on pairs
of integers, pairs of pointers, pairs of an integer and a pointer, etc.:

let $(x,y) = swap($("hello",3)); // x is 3, y is hello
let $(w, z) swap ($(4,3)); // w i1s 3, z 1is 4

Note that when calling a polymorphic function, you need not tell it
what types you're using to instantiate the type variables. Rather, Cyclone
figures this out through unification.

C++ supports similar functionality with templates. However, C++ and
Cyclone differ considerably in their implementation strategies. First, Cy-
clone only produces one copy of the code, whereas a C++ template is spe-
cialized and duplicated at each type that it is used. This approach requires
that you include definitions of templates in interfaces and thus defeats sep-
arate compilation. However, the approach used by Cyclone does have its
drawbacks: in particular, the only types that can instantiate type variables
are those that can be treated uniformly. This ensures that we can use the
same code for different types. The general rule is that values of the types
that instantiate a type variable must fit into a machine word and must
be passed in general-purpose (as opposed to floating-point) registers. Ex-
amples of such types include int, pointers, datatype, and xdatatype
types. Other types, including char, short,long long, float,double,
struct, and tuple types violate this rule and thus values of these types
cannot be passed to a function like swap in place of the type variables.
In practice, this means that you tend to manipulate a lot of pointers in
Cyclone code.

The combination of parametric polymorphism and sub-typing means
that you can cover a lot of C idioms where voidx or unsafe casts were
used without sacrificing type-safety. We use polymorphism a lot when
coding in Cyclone. For instance, the standard library includes many con-
tainer abstractions (lists, sets, queues, etc.) that are all polymorphic in the
element type. This allows us to re-use a lot of code. In addition, unlike
C++, those libraries can be compiled once and need not be specialized. On
the downside, this style of polymorphism does not allow you to do any
type-specific things (e.g., overloading or ad-hoc polymorphism.) Some-
day, we may add support for this, but in the short run, we’re happy not to
have it.

41

213 Polymorphic Data Structures

Just as function definitions can be parameterized by types, so can st ruct
definitions, dat at ype definitions, and even t ypedefs. For instance, the
following struct definition is similar to the one used in the standard
library for lists:

struct List<‘a> {‘a hd; struct List<‘a> * tl; };
typedef struct List<‘a> xlist_t<‘a>;

Here, we've declared a struct List parameterized by a type ‘a.
The hd field contains an element of type ‘a and the t1 field contains a
possibly-null pointer to a struct List with elements of type ‘a. We
then define 1ist_t< ‘a> as an abbreviation for st ruct List<‘a>x. So,
for instance, we can declare both integer and string lists like this:

list_t<int> ilist = new List{l,new List{2,null}};
list_t<string_t> slist = new List{.hd = "foo",
.tl = new List{"bar",null}};

Note that we use “new” as in C++ to allocate a new struct List
on the heap and return a pointer to the resulting (initialized) List object.
Note also that the field designator (“.hd”, “.t1”) are optional.

Once you have polymorphic data structures, you can write lots of use-
ful polymorphic code and use it over and over again. For instance, the
standard list library (see lib/list.h) includes functions for mapping over a
list, looking up items in a list, concatenating two lists, copying lists, sorting
lists, etc.

2.14 Abstract and Existential Types

Suppose you want to declare an abstract type for implementing stacks. In
Cyclone, the way this is accomplished is by declaring a struct that encap-
sulates the implementation type, and by adding the “abstract” qualifier
to the struct definition. For instance, if we write:

abstract struct Queue<‘a> { list_t<‘a> front, rear; };

then this declares a polymorphic Q